L-MARVEL
Source code in rcd/l_marvel/l_marvel.py
18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 |
|
__init__(ci_test, find_markov_boundary_matrix_fun=None)
Initialize the L-Marvel algorithm with the data and the conditional independence test.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
ci_test |
Callable[[str, str, List[str], DataFrame], bool]
|
A conditional independence test function. It takes the names of two variables and a list of variable names as the conditioning set. It returns True if the two variables are independent given the conditioning set, and False otherwise. Signature: ci_test(var_name1: str, var_name2: str, cond_set: List[str], data: pd.DataFrame) -> bool. |
required |
find_markov_boundary_matrix_fun |
Callable[[DataFrame], ndarray]
|
A function to find the Markov boundary matrix. It takes a Pandas DataFrame of data and returns a 2D numpy array. The (i, j)th entry is True if the jth variable is in the Markov boundary of the ith variable, and False otherwise. Signature: find_markov_boundary_matrix_fun(data: pd.DataFrame) -> np.ndarray. |
None
|
Source code in rcd/l_marvel/l_marvel.py
find_neighborhood(var)
Find the neighborhood of a variable using Lemma 27.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
var |
int
|
The variable whose neighborhood we want to find. |
required |
Returns:
Type | Description |
---|---|
ndarray
|
np.ndarray: 1D numpy array containing the variables in the neighborhood. |
Source code in rcd/l_marvel/l_marvel.py
has_alg_run()
Check if the algorithm has been run.
Returns:
Name | Type | Description |
---|---|---|
bool |
True if the algorithm has been run, False otherwise. |
is_neighbor(var_name, var_y, var_mk_set)
Check if var_y is a neighbor of variable with name var_name using Lemma 27.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
var_name |
str
|
Name of the variable. |
required |
var_y |
int
|
The variable to check. |
required |
var_mk_set |
Set[int]
|
Set of the variables in the Markov boundary of var_name. |
required |
Returns:
Name | Type | Description |
---|---|---|
bool |
bool
|
True if var_y is a neighbor, False otherwise. |
Source code in rcd/l_marvel/l_marvel.py
is_removable(var, neighbors)
Check whether a variable is removable using Theorem 32.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
var |
int
|
Index of the variable. |
required |
neighbors |
ndarray
|
Neighbors of the variable. |
required |
Returns:
Name | Type | Description |
---|---|---|
bool |
bool
|
True if the variable is removable, False otherwise. |
Source code in rcd/l_marvel/l_marvel.py
learn_and_get_skeleton(data)
Run the l-marvel algorithm on the data to learn and return the learned skeleton graph.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
data |
DataFrame
|
The data to learn the skeleton from. |
required |
Returns:
Type | Description |
---|---|
Graph
|
nx.Graph: A networkx graph representing the learned skeleton. |
Source code in rcd/l_marvel/l_marvel.py
reset_fields(data)
Reset the algorithm before running it on new data. Used internally by the algorithm.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
data |
DataFrame
|
The data to reset the algorithm with. |
required |