Exposed public API for Marvel
learn_and_get_skeleton(ci_test, data, find_markov_boundary_matrix_fun=None)
Learn the skeleton of a causal graph using the MARVEL algorithm.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
ci_test
|
Callable[[int, int, List[int], ndarray], bool]
|
A conditional independence test function that takes in the indices of two variables and a list of variable indices as the conditioning set, and returns True if the two variables are independent given the conditioning set, and False otherwise. |
required |
data_matrix
|
ndarray
|
The data matrix with shape (num_samples, num_vars), where each column corresponds to a variable and each row corresponds to a sample. |
required |
find_markov_boundary_matrix_fun
|
Callable[[ndarray], ndarray]
|
A function to find the Markov boundary matrix. It takes a numpy array of data, and returns a 2D numpy array. The (i, j)th entry is True if the jth variable is in the Markov boundary of the ith variable, and False otherwise. |
None
|
Returns:
Type | Description |
---|---|
Graph
|
nx.Graph: A networkx graph representing the learned skeleton. |
Source code in rcd/marvel/marvel.py
Marvel implementation details
Implementation for the MARVEL algorithm for learning causal graphs with latent variables.
This class is initialized with a conditional independence test function, which determines whether two variables are independent given another set of variables, using the data provided.
The class has a learn_and_get_skeleton function that takes in a data matrix (numpy array), where each column corresponds to a variable and each row corresponds to a sample, and returns a networkx graph representing the learned skeleton.
Source code in rcd/marvel/marvel.py
39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 |
|
__init__(ci_test, find_markov_boundary_matrix_fun=None)
Initialize the MARVEL algorithm with the conditional independence test to use.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
ci_test
|
Callable[[int, int, List[int], ndarray], bool]
|
A conditional independence test function. It takes the indices of two variables and a list of variable indices as the conditioning set, and returns True if the two variables are independent given the conditioning set, and False otherwise. Signature: ci_test(var1: int, var2: int, cond_set: List[int], data: np.ndarray) -> bool. |
required |
find_markov_boundary_matrix_fun
|
Callable[[ndarray], ndarray]
|
A function to find the Markov boundary matrix. It takes a numpy array of data, and returns a 2D numpy array. The (i, j)th entry is True if the jth variable is in the Markov boundary of the ith variable, and False otherwise. Signature: find_markov_boundary_matrix_fun(data: np.ndarray) -> np.ndarray. |
None
|
Source code in rcd/marvel/marvel.py
find_neighborhood(var_idx)
Find the neighborhood of a variable using Lemma 27.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
var_idx
|
int
|
The variable whose neighborhood we want to find. |
required |
Returns:
Name | Type | Description |
---|---|---|
tuple |
|
Source code in rcd/marvel/marvel.py
learn_and_get_skeleton(data)
Run the MARVEL algorithm on the data to learn and return the learned skeleton graph.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
data
|
ndarray
|
The data matrix with shape (num_samples, num_vars). |
required |
Returns:
Type | Description |
---|---|
Graph
|
nx.Graph: A networkx graph representing the learned skeleton. |
Source code in rcd/marvel/marvel.py
98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 |
|
learn_v_structure(var_idx, neighbors, co_parents_arr, var_mk_idxs, y_sep_set_dict)
Learns the v-structures of a given variable.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
var_idx
|
int
|
The index of the variable for which to learn the v-structures. |
required |
neighbors
|
List[int]
|
A list of indices representing the neighbors of the variable. |
required |
co_parents_arr
|
ndarray
|
A list of indices representing the co-parents of the variable. |
required |
var_mk_idxs
|
ndarray
|
A list of indices representing the variables in the Markov boundary of the variable. |
required |
y_sep_set_dict
|
Dict[int, Set[int]]
|
A dictionary mapping indices of other variables to the separating sets that distinguish them from the current variable. |
required |