ROL-HC
Source code in rcd/rol/rol_hc.py
10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 |
|
__init__(ci_test, max_iters, max_swaps, find_markov_boundary_matrix_fun=None)
Initialize the ROL hill climbing algorithm with the conditional independence test to use.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
ci_test |
A conditional independence test function that takes in the names of two variables and a list of variable names as the conditioning set, and returns True if the two variables are independent given the conditioning set, and False otherwise. The function's signature should be: ci_test(var_name1: str, var_name2: str, cond_set: List[str], data: pd.DataFrame) -> bool |
required | |
max_iters |
int
|
Maximum number of iterations to run the algorithm for. |
required |
max_swaps |
int
|
Maximum swap distance to consider. |
required |
find_markov_boundary_matrix_fun |
optional
|
A function to find the Markov boundary matrix. This function should take in a Pandas DataFrame of data, and return a 2D numpy array, where the (i, j)th entry is True if the jth variable is in the Markov boundary of the ith variable, and False otherwise. The function's signature should be: find_markov_boundary_matrix_fun(data: pd.DataFrame) -> np.ndarray |
None
|
Source code in rcd/rol/rol_hc.py
compute_cost(r_order, starting_index, ending_index)
Compute the cost of the given r-order between the specified starting and ending indices.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
r_order |
ndarray
|
The r-order to compute the cost of. |
required |
starting_index |
int
|
The starting index of the r-order to compute the cost of. |
required |
ending_index |
int
|
The ending index (exclusive) of the r-order to compute the cost of. |
required |
Returns:
Type | Description |
---|---|
ndarray
|
np.ndarray: The cost of the given r-order between the specified starting and ending indices. |
Source code in rcd/rol/rol_hc.py
find_neighbors(var, var_mk_bool_arr)
Find the neighborhood of a variable using Lemma 27.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
var |
int
|
Index of the variable in the data. |
required |
var_mk_bool_arr |
ndarray
|
Markov boundary of the variable. |
required |
Returns:
Type | Description |
---|---|
ndarray
|
np.ndarray: 1D numpy array containing the indices of the variables in the neighborhood. |
Source code in rcd/rol/rol_hc.py
has_alg_run()
Check if the algorithm has been run.
Returns:
Name | Type | Description |
---|---|---|
bool |
bool
|
True if the algorithm has been run, False otherwise. |
is_neighbor(var_name, var_y, var_mk_set)
Check if var_y is a neighbor of variable with name var_name using Lemma 27.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
var_name |
str
|
Name of the variable. |
required |
var_y |
int
|
The variable to check. |
required |
var_mk_set |
Set[int]
|
Set of the variables in the Markov boundary of var_name. |
required |
Returns:
Name | Type | Description |
---|---|---|
bool |
bool
|
True if var_y is a neighbor, False otherwise. |
Source code in rcd/rol/rol_hc.py
learn_and_get_skeleton(data, initial_r_order=None)
Learn the skeleton of the graph using the ROL hill climbing algorithm.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
data |
DataFrame
|
The data to learn the skeleton from. |
required |
initial_r_order |
ndarray
|
The initial r-order to use. If not provided, the algorithm will use RSL-D to find the initial r-order |
None
|
Returns:
Type | Description |
---|---|
Graph
|
nx.Graph: A networkx graph representing the learned skeleton. |
Source code in rcd/rol/rol_hc.py
learn_skeleton_using_r_order(r_order)
Learns the skeleton of the graph using the given r-order.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
r_order |
ndarray
|
The r-order to use for learning the skeleton. |
required |
Returns:
Type | Description |
---|---|
Graph
|
nx.Graph: A networkx graph representing the learned skeleton. |
Source code in rcd/rol/rol_hc.py
reset_fields(data)
Reset the algorithm before running it on new data.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
data |
DataFrame
|
The data to reset the algorithm with. |
required |
Source code in rcd/rol/rol_hc.py
update_markov_boundary_matrix(markov_boundary_matrix, var_idx, var_neighbors)
Update the Markov boundary matrix after removing a variable. :param var_idx: Index of the variable to remove :param var_neighbors: 1D numpy array containing the neighbors of var_idx