RSL algorithms implementation details
Common functionality for Recursive Skeleton Learning algorithms.
Parameters
ci_test : Callable[[int, int, list[int], np.ndarray], bool]
Conditional independence test. The callable receives the indices of two
variables, a conditioning set, and the data matrix, and returns True
when the variables are conditionally independent given the set.
find_markov_boundary_matrix_fun : Callable[[np.ndarray], np.ndarray], optional
Custom routine that estimates the Markov boundary matrix. If omitted, a
Gaussian partial-correlation based estimator is used.
Notes
Concrete subclasses must implement :meth:find_neighborhood and
:meth:is_removable.
Source code in rcd/rsl/rsl_base.py
23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 | |
compute_removal_order(data, clique_num=None)
Compute the removal (r-) order without constructing the skeleton.
Parameters
data : np.ndarray
Matrix of shape (n_samples, n_vars) whose columns correspond to
variables.
clique_num : int, optional
Upper bound on the clique number. Required for non diamond-free
variants.
Returns
np.ndarray Integer array containing the order in which variables are removed.
Raises
ValueError
If clique_num is not provided for algorithms that require it.
Source code in rcd/rsl/rsl_base.py
find_neighborhood(var)
Return the neighborhood of var in the current skeleton estimate.
Parameters
var : int Index of the variable whose neighborhood is requested.
Returns
np.ndarray
Indices that are neighbors of var.
Source code in rcd/rsl/rsl_base.py
find_removable(var_arr)
Locate the first removable variable in var_arr.
Parameters
var_arr : np.ndarray Candidate variable indices ordered by preference.
Returns
int
Index of the first removable variable, or REMOVABLE_NOT_FOUND if
none qualify.
Source code in rcd/rsl/rsl_base.py
is_removable(var)
Determine whether var can be removed without violating constraints.
Parameters
var : int Index of the candidate variable.
Returns
bool
True if the variable can be removed, False otherwise.
Source code in rcd/rsl/rsl_base.py
learn_and_get_skeleton(data, clique_num=None)
Learn and return the skeleton implied by the data.
Parameters
data : np.ndarray
Matrix of shape (n_samples, n_vars) whose columns correspond to
variables.
clique_num : int, optional
Upper bound on the clique number. Required for algorithms that are
not diamond-free variants.
Returns
nx.Graph Undirected skeleton learned by the recursive elimination procedure.
Raises
ValueError
If clique_num is not provided for algorithms that require it.